Discrete Simulation of Reactive Flow with Lattice Gas Automata

نویسنده

  • Kazuhiro Yamamoto
چکیده

Normally, flow field is described with governing equations, such as the Navier-Stokes equations. However, for complex flow including multiphase and reactive flow such as combustion, this approach may not be suitable. As an alternative approach, Lattice Gas Automata (LGA) has been used to simulate fluid with mesoscopic particles by assuming that space and time are discrete, and the physical quantities take only a finite set of values. In this study, the model for combustion simulation is proposed, with the reaction probability depending on the local temperature to simplify the chemical reaction. Here, counter-flow twin flames are simulated. In order to validate this approach, some results of non-reactive flow are presented, compared with those by solving Navier-Stokes equations. key words: LGA, reaction probability, combustion, counter-flow flame

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lattice Gas Automata Simulation of Adsorption Process of Polymer in Porous Media

Lattice gas automata (LGA) model is developed to simulate polymer adsorption process by adding some collision rules. The simulation result of the model is matched with batch experiment and compared with accepted isothermal adsorption equations. They show that the model is viable to perform simulation of the polymer adsorption process. The LGA model is then applied for simulating continuous poly...

متن کامل

Numerical simulation of a three-layered radiant porous heat exchanger including lattice Boltzmann simulation of fluid flow

This paper deals with the hydrodynamic and thermal analysis of a new type of porous heat exchanger (PHE). This system operates based on energy conversion between gas enthalpy and thermal radiation. The proposed PHE has one high temperature (HT) and two heat recovery (HR1 and HR2) sections. In HT section, the enthalpy of flowing high temperature gas flow that is converted to thermal radiation em...

متن کامل

Influence of Thermal Radiation Models on Prediction of Reactive Swirling Methane/Air Flame in a Model Gas Turbine Combustor

 A numerical simulation of reactive swirling methane/air non-premixed flame in a new three-dimensional model combustion chamber is carried out to assess the performance of two thermal radiation models, namely, the Discrete Transfer Radiation Model and the P-1 Model. A Finite Volume staggered grid approach is employed to solve the governing equations.The second-order upwind scheme is applied for...

متن کامل

Quantum Mechanics of Lattice Gas Automata I. One Particle Plane Waves and Potentials

Classical lattice gas automata effectively simulate physical processes such as diffusion and fluid flow (in certain parameter regimes) despite their simplicity at the microscale. Motivated by current interest in quantum computation we recently defined quantum lattice gas automata; in this paper we initiate a project to analyze which physical processes these models can effectively simulate. Stud...

متن کامل

Lattice Gas Automata: Drying simulation in heterogeneous models

Moisture flow in porous media is the driving force behind early age drying shrinkage. Fracture in the interfacial transition zone (ITZ), between cement paste and aggregateinclusion, is related to restraint caused by, among others, aggregates that obstruct free deformation of the paste. Environmental Scanning Electron Microscope (ESEM) test results are used as a base for the developed method for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 87-D  شماره 

صفحات  -

تاریخ انتشار 2004